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An analytical study is made of nearly free-molecular flow of a noble gas from one
reservoir to another through a two-dimensional slit, with finite pressure and
temperature ratios across the slit. The fundamental solution of the linear
Boltzmann equation is employed in the study. The total mass flow is calculated
to the first-order correction terms, of the order of zln« and a, where « is the
inverse Knudsen number. The coefficients of these terms are in general multiple
integrals, but they become explicit functions of the pressure and temperature
ratios after the multiple integrations are carried out by using Krook collision
model, When the general result is simplified to the isothermal case the first-order
correction has a negative value, indicating the reduction of the total mass flow
due to intermolecular collisions in the counter flows.

1. Introduction

The steady-state flow of a noble gas from one reservoir to another through an
aperture (a circular orifice or a slit) in the separating wall is induced by either a
pressure difference or a temperature difference, or a combination of the two, in
the equilibrium conditions of the gas at large distances from the aperture. The
problem of aperture flow due to a pressure difference only is of long standing
beginning with Knudsen’s (1909) classical work on ‘effusion’ in the free-molecular
limit. A survey of some of the work on this type of flow will be given later. The
problem of aperture flow due to a temperature difference only has not received
very much attention although it is connected to the molecular beam work. The
more general problem of aperture flow caused by both pressure and temperature
differences has apparently not been studied at all. In this general case the net
mass flow of the gas could go either way through the aperture and could be zero
when the pressure and temperature effects are completely compensated for by
each other. In other words, the combined effect of the pressure ratio, x = p,/p,,
and the temperature ratio, 7 = T}/7,, determines the direction of the net mass
flow. Here, p,(= p,RT}) and T are the equilibrium pressure and temperature
of the gas in reservoir 1 and p,(= p, BT}) and T}, are those in reservoir 2 (p, and
p, are the equilibrium densities of the gas in reservoirs 1 and 2 and R is the gas
constant). The third parameter in the problem, which determines the flow
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regime, is the Knudsen number K defined as the ratio of the mean free path of
the gas at far upstream in reservoir 1 to the diameter of the orifice or the width
of the slit (i.e. K = A;/2F,, where the tilde denotes a dimensional quantity).
These three physical parameters, x, 7 and K, constitute a three-dimensional
parameter space encompassing various flow regimes with each regime exhibiting
a different flow behaviour. Other parameters may be employed instead of x and 7.
One may define a characteristic velocity U by U = (p,/p,}[1 —73x~1] and con-
sequently a Mach number M by M = U/(p,/p,)} = [1—-7¥«~1] and a Reynolds
number Re by Re = p, Uy, = (p17o/tt1) (P1/p1)}[1 —TEx~1], where g, is the vis-
cosity of the gas far upstream in reservoir 1. Nevertheless, the Mach number
and the Reynolds number so defined in the general case are not as meaningful
as those corresponding to either the isothermal case (7 = 1) or the isobaric case
(k = 1). We therefore prefer «, 7 and K to M, Re and K(= M/[Re) in this work.

The problem of aperture flow is of interest for several reasons. As pointed out
by Liepmann (1961), this problem offers the possibility of a comparison between
experiment and a kinetic theory analysis which is not sensitive to the nature of
molecular interaction with the boundary walls. Thus it motivates both experi-
mentalist and theoretician to develop methods of obtaining solutions for various
regions of the three-dimensional parameter space. Of particular interest are the
nearly free-molecular flow region where K is much larger than unity, the slip
flow region where K is small and flow regions with either large or small x and
either large or small 7. The method of solution for each region will be different
owing to different limiting singular behaviour of flow. Also, the solution of the
three-dimensional orifice flow is in general of a different form from that of the
two-dimensional slit flow. Furthermore, numerical methods can be developed in
computing the mass flow and in studying the effect of various molecular models.

A survey of the literature indicates that most of the experimental, analytical
and numerical work is so far centred on the orifice flow at large « and 7= 1.
Liepmann (1961) is the first to do both theoretical and experimental investiga-
tions of the mass low of a noble gas from a large container to a vacuum container
through a circular orifice. The containers are of the same temperature and the
upstream pressure varies from continuum to free-molecular conditions. Liep-
mann’s experimental data in the nearly free-molecular region agree favourably
with the first-order result (including a correction term of the order of K1)
obtained by Narasimha (1961) using Willis’s (1958) method. Willis’s method is
to convert the Krook (Bhatnager, Gross & Krook 1954) kinetic equation into
an integral form and to perform iterations on it, starting with the free-molecular
value of the distribution function. To improve Narasimha’s method of compu-
tation, Willis (1965) calculated, by performing one iteration, the total as well as
the local mass flow rate of a nearly free-molecular flow through an orifice and
through a two-dimensional slit under the same condition of a large pressure
ratio across the aperture. There is agreement between Willis’s theoretical results
and Liepmann’s experimental data in the circular orifice case. As far as numerical
work is concerned, the method developed by Rotenberg & Weitzner (1969) on
hard-sphere molecules is noteworthy. They computed the first-order correction
to free-molecular mass flow with an infinite pressure ratio across an orifice.



Nearly free-molecular slit flow 567

More experiments on the orifice flow have been performed since Liepmann’s
work. Sreekanth (1965) undertook his experimental work for the orifice-flow at
a range of pressure ratios from 1 to 18 and of Knudsen numbers from 0-13 to
1-78. Lord, Hurlbut & Willis (1967) used a different method to repeat Liepmann’s
experiment, and their result on the total mass flow rate is in good agreement
with Willis’s orifice solution. Smetana, Sherrill & Schort (1967) made measure-
ments of the discharge characteristic of sharp-edged and round-edged circular
orifices for a wide range of Knudsen numbers and pressure ratios. Their results
in the case of sharp-edged orifices agree with Liepmann’s and Sreekanth’s
experimental data and with Willis’s theoretical results for Knudsen numbers
greater than 0-4.

No experiments have yet been performed on the flow through a two-
dimensional slit. As mentioned earlier, Willis’s (1965) theoretical result on the
slit flow is obtained for the limiting case of infinite pressure ratio in which the
back flow from reservoir 2 could be ignored. In the case of a finite pressure ratio
the only theoretical result which has appeared to date is that of Stewart (1969).
By applying Willis’s method separately to flows in each direction, Stewart
obtained two flow rates under the condition of an infinite pressure ratio and then
took the algebraic average of the two values as the rate of the flow with a finite
pressure ratio across the slit. Such a procedure is open to question for the simple
reason that molecular collisions in the counter flows, which affect the net mass
flow, have been completely ignored. It is apparent that the existence of counter
flows makes analytical determination of the mass flow difficult. For this reason
the problem of aperture flow at finite pressure and temperature ratios has not
been treated so far. In this work, however, we shall overcome this difficulty by
employing the method of fundamental solution of the linear Boltzmann equation
as developed by Yu (1967). Here we will treat nearly free-molecular flow through
a two-dimensional slit between two reservoirs at low pressure and temperature
ratios. As will be shown later our result is first formally presented in multiple-
integral form, valid for a general molecular model. The multiple integrals are
then asymptotically expanded in powers of the inverse Knudsen number « (to
be defined later along with A,). The explicit asymptotic result given here includes
only the first-order terms or terms of the order of alna and a and the explicit
expression of the coefficients is obtained on the use of the Krook collision model.

2. Fundamental solution

We consider a steady-state low of a noble gas through a two-dimensional slit
of width [ = 27, between two reservoirs, as shown in figure 1. At a distance far
upstream in reservoir 1 the gas is in equilibrium, as characterized by the absolute
Maxwellian F,,; = p, (27RT,)~# exp (— E2/2RT)), where £ is the molecular velocity.
At some distance far downstream in reservoir 2 the gas reaches another equili-
brium state with density p, and temperature 7,. The wall separating the reser-
voirs is assumed to be infinitely thin and to be heat insulated in such a way that
it has constant temperatures 7} and 7, on the sides of reservoirs 1 and 2. The
equilibrium pressure in reservoir 1, p,, is greater than or equal to that in reservoir
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2, p,. The pressure and temperature ratios « = p,/p, and 7 = 13 /7, are assumed
to be not much different from unity so that the perturbed distribution function
in reservoir 1, f(= (¥ —F,,)/F,,), is small compared with unity. The combined
effect of these two ratios determines the direction of the net flow, though we
consider the net flow from reservoir 1 to 2 to be positive. In the present work,
we consider the case of nearly free-molecular low so that the inverse Knudsen
number, the expansion parameter in our problem, is much smaller than unity.

Reservoir 1 Reservoir 2

Fiqure 1. Slit flow between two reservoirs, 1 and 2, with p;, T}, 25, A;,in 1
and p,, Ty, Py, A5 in 2.

Since the slit has a much smaller width than the mean free path of the gas, it
appears as a line source with respect to an observer in reservoir 1 at a distance
away of the order of A;. Molecular particles with a velocity € arriving at the
observer through the slit are assumed, as an approximation, to be those of the
absolute Maxwellian, F,,, = p,(2nRT,)~} exp (— E2/2R1T}), from reservoir 2. Mole-
cules arriving there from elsewhere are assumed to be those of F,; under free
flow conditions. This is true for any boundary condition at the wall since mole-
cules either diffusely or specularly reflected from the wall have the same
Maxwellian distribution function. Using the foregoing assumptions the line
source may be written as the product of a two-dimensional delta function
O(F)[f(x = rcosf, y =rginfh) is the two-dimensional position vector] and a
source function. To express the source function with respect to reservoir 1 let
us draw a unit vector fi, at the middle point of slit pointing toward 2. Let ¢, be
the angle that Ep, the planar component of E(= gpf'+ﬁzi), makes with fi,
measured counterclockwise from fi, as shown in figure 1. The line source emits
molecules towards and absorbs molecules from reservoir 1 at all velocities E.
We consider the molecules emitted by the source toward reservoir 1 (i.e. those
of F,,, from reservoir 2) to have positive contribution and the molecules from
reservoir 1 absorbed by the source (i.e. those flowing through the slit into
reservoir 2) to have negative contribution. With this sign convention the source
function is written in non-dimensional form (with respect to RT}/(p,A,)) as

o(§) = —(2m)32ry £, cos O, H(— cos ) [k-'rEexp (—37E2) —exp (— }E3)], (1)
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where 7, = 7,/A;, £ =E(RT})~* and —cosf; > 0. We now add the line source
term to the linearized non-dimensionalized Boltzmann equation (Grad 1959)
governing the perturbed distribution function f(r, §),

E,. (0f [or) +v(E)f = K[f]+(o(E)/w(£)) &(r), (2)
where w(£) = (27)~}exp (—1£2). Equation (2) is written in the form valid for
molecules possessing a cut-off potential (Grad 1963). This is because the linear
collision integral operator has already been split into two parts with one part
involving the collision frequency v(£) and the other part being the integral

K[f] = f K(E 1) f(n) d,

where E(£,7) is a collision kernal. The collision frequency v(£§) has been non-
dimensionalized with respect to (RT})¥/A,. Both v and k(£,7) have explicit
expressions for a given molecular model (Chapman & Cowling 1960; Grad 1963).
Now, to solve (2) we decompose f into three parts (Yu 1967) f = f; + f, +f;, such
that each part respectively satisfies the following equations:

E,- (8fslor) +vfs = (a(§)[w(§)) o(r), (3)
Ep'(afa/ar)+vfa = K[fd‘]’ (4)
E, . (Ofslor)+vf, = K[f1+ K[f,]. (5)

Here, f, governs those molecules streaming along the ray wedge extending from
the line source. Through collisions f; produces particles with distribution function
fa- The remaining part f, governs those particles that have had encounters with
particles elsewhere and with the f,-particles. Integration of (3) along a character-
istic yields

fo(r,8) = (a(€)/w(€)) (1/,) exp [ — (€} ry/E,] 6(r,) H(ry), (6)
where r, and r, are the components of r perpendicular and parallel to §, res-
spectively, and H(r,) is the Heaviside function. Upon substituting (6) into (4)
and then integrating it along a characteristic, we obtain (Yu 1967) f, in integral
form as

o[ (¥ 1 v(£)sin 0’ v{n)sin 6"
fa(r, 6: E) —-f—a)fo fO (l)(?]) k(g’ ”)‘g—;exp{ [gpsin(ﬁl—a”)_ﬂpsin (6/_6”)] r}
1 sin ¢’ sin @8" ,
= =) | ) O i O
where ¢’ and ¢” are the angles that n, and §, make with r.

Finally we solve for the remaining part f, in an approximate way by expanding
it in terms of its moments, u, (*) and p, (r) (= p, + T}), defined by

Uy = fgww@)fbdz, gy = fg,,w@)fbdz, Py = f%gwg)fbdz, (8)

(o= [orits. 7, = [ -2)0sa5).

where £, and £, are the components of , parallel and perpendicular to fi,
Hence the expansion of f, takes the form

Jo (€, 8) = Extny(r) + £ty (T) + 36715 (T)- (9)
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By taking the first moment of (5), integrating the resulting moment equation
for p, with respect to » and using the boundary condition that p, approaches
zero as r approaches infinity we obtain

Py (T) = —fgp cos 0" w(§) k(§, §) k(,7) [qp~" exp (—pr)]dndCdE,  (10a)

_ y(g)sind’ v(7) sin 60"
Whel‘e p= gpsin (0’—0”)—77psin (01_0”): (10b)

— 0-(77) 1 sin 6’ gin 6" _
1= o) [sin (@ =07 H [sin = 0,,)] H [_ sin (0 — 0,,)] mp &)™ (10¢)

and &' = cos™! (ﬁp .1), 6" = cos™! (fp .t), 8" = cos™1 (é.f). (Note that * denotes a
unit vector.) We then take the zeroth moment of (5) and define ¢(r) as the
velocity potential such that uw, = —V¢. Then ¢ can be shown to satisfy the
following Poisson equation

Vg = — KO _Klgexp(—pr)], (11a)

where KOKJ[...]= fw(g) Ky Ky, [...1dE = [0k(§, §) k(L m) [...]dn dCdE.

The boundary condition for (11a) is d¢/on = 0, where = denotes the co-ordinate
normal to the walls. The Green’s function G of (11a)is G = (2)~'1In (1/r). Hence,
the solution of (11a) is given by the following volume integral over the unshaded
region V as depicted in figure 1,

é(r) = fVK(O’ K[q' exp (—p'r")](27)In [r —r'|~1dr’, (11b)

where p’ and ¢’ are the same as (105, c) except that 6’ and 6" are now measured
from #'. In (11b) the surface integral has already been dropped as d¢/on = 0
and 0G/on = 0 at the boundary. Since V contains both reservoirs care must be
exercised in the use of the source function. In the reservoir 1 part of V the
source function is that given in (1), whereas in the reservoir 2 part of V the
source function used for the computation is the same as that in (1) except that
H(—cos6,) is replaced by H(cosf,). The components of the velocity u, are
obtained by differentiating ¢(r) in (115) with respect to « and v, i.e.

Upg — a/ax ) ’ ! _ g '
(uby)_ (a/ay)fVK(".K[q exp (—p'')] (2m)-1In |[r—r'|Ldr’.  (L10)

In the region near the slit, where r is small, a better approximate solution of f,
is obtained by expanding it in series of the form (Yu 1967)

Jo(r,0,8) = dy(8)+d, (0,E)rinr+d,y(0,8)r+ ... (12)

In the present work we need only evaluate the first term, d,(€) = f,(0,§), for a
first-order correction to the free-molecular flow rate. Here we approximate
J(0,E) by using the moment expansion in (9) evaluated at r = 0, i.e.

do(8) = &5 (0) + £, Uy, (0) + 3£%p, (0), (13)
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where 1w, (0), u, (0), and p,(0) are evaluated as follows. By symmetry of the
flow with respect to the centre-line of the slit we have u,,(0) = 0. From (1lc)
we find

43, (0) = lim —Z [ KO E[g exp[~ /(22 +y]
x, y—0 vV
’ x (2m) 1 [(z— o2+ (y—y)Edo'dy’. (14)
Using (10a) we express p,(0) as

§n
2y(0) = lim 2 [ gy (r, 6) d6. (15)
r=07J) 37

3. Evaluation of total mass flow rate

The foregoing results for f; in (6), f, in (7) and f, in (12) (for small r only)
complete the fundamental solution of (2). We will now use the fundamental
solution to compute the total mass flow rate through the slit. For this purpose
we draw a semicircle of radius 7,(< A,) with centre at the middle point of the
slit, as shown in figures 2 and 3. The radial vector ¥, intercepts the semicircle
at a point 4 and makes an angle @ with the unit normal fi,, measured in the

Fraure 3. Velocity of f,- and f,-molecules.
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counterclockwise sense. It is easily seen that any molecules reaching the point
A on the semicircle must have the direction of their velocities lying between the
angular range [6,;,0,,], where 8, = }7+ 160 and 0,, = 37+ 16 are functions of
the position of the point 4. The mass flow rate contributed by f;, m;, can be
calculated by integrating the first moment of f; evaluated at r = r;, over the

semicircle: ) i L
ms = —J; fgp cos (6, — 0) 1 5 (ry, E) dEFy db. (16)

The minus sign in (16) is used to make the low rate from reservoir 1 to 2 positive.
This is necessary since f;, as stated earlier, is the distribution function of those
molecules directly from the source, at which the direction of velocities towards
reservoir 1 was taken to be positivein (1). Upon substituting o/(§)in (1) and f; in (6)
into (16) and carrying out the integrations with respect to 6, (in therange (6,6,,))
and 6, we obtain

iy = (2m)$sy o [ 7 g3 onp (— 468)— coirbexp (~ o)
x exp [—v(£) €5 ro] dE, dE,}.  (174a)
For small r, the double integrations in (17a) may be asymptotically expanded in
powers of r,. The asymptotic expansion will be carried out later, after the
molecular model has been specified. At any rate the leading term in the expan-
sion corresponding to ry = 0 (for A; = o) in the exponent, recovers the free-
molecular flow rate, independent of the molecular model, namely,

= enyry s [* 7 Blexp (- 36 - coirhexp (— yre g, de,

27 D Py
= <27r(3% [(Ri)f (RTM] : (178)

As will be shown later, the second term in the expansion is of the order of ,
with the coefficient being a funection of 7 and «.

Next we evaluate the mass flow rate corresponding to f,. As explained earlier
f. governs those molecules in reservoir 1 produced by the fs-particles through
collisions. It is noted in figure 3 that of the f, molecules arriving at a point 4
on the semicircle only the ones with the planar component of the velocity &,
lying in the angular range [0 = $7— 10,0, = Zm — 0] will pass through the slit
into reservoir 2. Integration of the first moment of f, over the entire semicircle
yields the mass flow rate 7, of those f,-molecules passing through the slit, namely,

T, ~f f f gpcos(ﬁ”—w Eaf. 0”d§pd§zr0d0 ‘

f f f fJ. f f%:g c"S(’"(zi"f) E) oy (7,) k(€. ) (2myE2rym,

x cos (6 +6") H[ - cos (0 +8')] [k 7t exp (— 1m9?) — exp (— 172)]
v(g)sinf  y(y)sinf” 1 sin &’
X eXPp : - [gp sin (0'—6") 7,sin(0'— 0”)] ro} |sin (6" — 6")] B [sin (&' — 0”)]

sin 0" , , )
[ - SIT(OT—-_e_”)] ae dﬂpdﬂzda dgp dgzrodﬁ} .

(18)
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The foregoing sevenfold integrations contain the collision frequency v(§) and
the collision kernel (£, %), which have not yet been specified. As shown before
(Yu 1967), the multiple integrations in (18) can be asymptotically expanded in
powers of r,, for small 7, with the leading term being of order r,In7, and the
second term of order 2.

Finally we evaluate the mass flow rate due to f, as approximated by the
expansion (12) evaluated at r = rg,

iy = f f ] f °‘"{ (RTHE cos (6,— m) (&)
x [£, cos (04+0) Uy, (0) + 1£2p(0)1 40, dE , dE, 7y d0} + O(riInrg), (19)

where 0, = cos™ g,, ), Oy = 3m—130, 0, = Zm—406. Note in (19) that only the
first term of expansion of f»> a8 given in (13), is used while u,,(0) is given in (14)
and p, (0) in (15) By carrying out the integrations in (19) we obtain

= [p,l|2(RT)}] [, (0) + (8/5(2m)%) p,, (0)] 7o+ O(r2In 7). (20)

4. First-order results

We have now obtained the exact integral expressions of 7, and 7, as given
by (17) and (18) respectively, and the series expansion of #, ,as given by (20).
The total mass flow rate per unit width of the slit is the sum, i.e. m = 75+ m, + 7.
Numerical evaluation of these multiple integrals in the case of a general molecular
model appears to be difficult. As we are mainly interested here in obtaining the
first-order correction to free-molecular flow rate we shall asymptotically expand
the multiple integrals for m, and r,. However the coefficients of each term of the
asymptotic series are still multiple integrals (but of one fold less) and thus cannot
in general be evaluated analytically for a general molecular model. Nevertheless,
if the Krook molecular model is employed all these multiple integrations can be
carried out completely. The coefficients then become explicit functions of the
flow parameters k and 7 and thus offer a physical interpretation of the flow
problem in terms of these parameters. Furthermore, such an explicit result can
be compared with the theoretical solutions of Willis etec. based on the Krook
model. The Krook collision kernel in the present case can be shown to be

k€, m) = o() [1+8,.7, + (8- 3) (9*—3)]. (21)
The corresponding non-dimensional collision frequency v is a constant which
has a value (8/m)} when A, is defined with respect to the average molecular speed
£ = (8/m)} (RTy)t. For convenience we define the inverse Knudsen number as
o = vry = (8/m)bry = (2/m)IK-1L.
Now, by using the Krook molecular model, we expand the integrals in (17a)
and (18) and evaluate the coefficients analytically, obtaining
Lo 2] P Pa ﬁ)'}] 2
My = Mgy, —77_[(RT1)’1 W] ( a+ O(a?). (22)
g = [P12o/4n(RT,)H]
x {B(k,7)elna™ — [k (1) - I(1) + 0-577 B(x, 7)]a + O(e?In )}, (23)
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where B(k,7) = jm—1—x-Y(}mrd —7) (24)
and
I(7) = (2—1/37) 7[2Uy, (1) + 0-442] — 738U, + 0-090] — $[8U,, + 0-384]

—(3—1/671)7[8U,;+0-384] + }[48U,;— 0-567], (25)
3
with U, (T) = f cos™ @ sin™ 0 In (cos 6 + ¥ sin 6) d6, (26)
0

which can be numerically evaluated on a computer for a given value of 7. At
7 =1 we find I(r) = 0-1225. (27)
In a similar way we carry out the 11-fold integrations for u,,(0) in (14) and the

10-fold integrations for p,(0) in (15) and substitute the results into (20), thus
obtaining

tiy = (Py(275)) (2T RTYH) {3 R{R(1) — k1R(r)] + 4[P(1) — kP(r) ]} @ + O(e®In t).
(28a)

Here, R(1) = —2m3[(47—%) Ry (7)— ST*Raz — 3By —4(7~%) By3+ 8R4, (280)
P(1) = —(2/n")}{3(77— 1) Ry (1) + $7%(27 — ) Ry — 1273R,,

s 4R 150 _5m2R  _1Bn2(r _
4Ry +4Roy— 30mPriRyy — §m2 Ry — 13m% (1 — §) Ry,

+ 4Ry — 878Ry, — 4(T— 3) Rog + 3572 Ry, + 32 Ry, (28¢)
7 cos™ @ sin™ 4
where Bnn (1) = fo cosf+1sinf

and can be evaluated numerically for a given value of 7. At 7 = 1, R(1) = 0-0184
and P(1) = 0-0224.

Finally, by adding m, in (22), m, in (23) and 1, in (28), and taking into account
terms of the order of xIna ! and « we obtain the total mass flow rate per unit
width of the slit,

M = My, + M5 [(87) Bk, T)]aIna~t —mE, {(2/m)t (1 —k17)
+[0-577(8m) %] B(k, 7) — (8m) 2I(1) — kI (1)] — (3m)R(1) — k-1R(T)]
—4[P(1)—kP(1)]}a+ O(e?Ina, a?), (29)

where 7, = [Ip,/(2mRT,)}] [1 —712K—1] is that given in (17b) and
m;om = Z’271/(27T-RTI)§‘

is the rate of flow into & vacuum reservoir (with p, = 0 or K = o0). The subscripts
Jm signify that »m and m> have the same expressions as those in the free-molecular
flow condition. It should be noted that in the isothermal case the pressures under
the free flow condition are lower than the values here for the same slit width.
Now, when p, = p,or k = 1 and 7} = T}, or 7 = 1, 7 in (29) vanishes identically,
as it should. When 7 = T} in the isothermal flow 7|, = (1 —«~1)m, and
m in (29) reduces to

M| ey = M| o1 {14 (1/2(2m)}) (3 — 1) 2 In o1~ 0-7975 & + O(a®In ¢, a2)}.
(30)
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It is noted from (30) that s/, in the case of 7 =1, is independent of «, as
shown by a single curve plotted in figure 4. This plot indicates that (1 — 1iz,,) /110,
is negative.
When p, = p, in the isobaric case, the flow is induced by thermal diffusion
only. In this case 7|y = [[p,/(2nRT)¥][1 — 7], where the factor
Ip,/(2nRTy)

no longer has the same meaning as in the case of an infinite pressure ratio.
After a simplication of (29) the total mass flow in the isobaric case is given by

1] o1 = Mig]ca{1 + (87) [ — (1 = 7)[(1 - })] @ In @™t — (1 - 7H) 7
x {(2/m}(1 — 1)+ 0-577(8m)H[Ea(1 —74) — (1 —7)] — (8m) I (1) — I(7)]

~ (mHR(1) - R(n)] -3[P(1) - P()]ja + O(a*In &, a?). (31)
IO e e ‘
E o
£ 0-9
|
08
07 1 A 1 1 1 J‘
4 6 8 10 20 40 60 100
K

FI1GURE 4. [/l vs. K.

The sign of |, follows that of 7|, at a given value of 7. When 7 < 1 or
Ty < T, (or p; > p,) both 7 and i, are positive, indicating a net flow from
reservoir 1 to 2. When 7 > 1 or 7} > T, (or p; < p,), the direction of the net flow
is reversed. A plot of [m|n,]—; (> 0) versus K is made in figure 5 for
various values of 7 in the range 0-5 to 2:0, and shows that the net flow rate
decreases from the free flow value as the Knudsen number K decreases or as
more molecular collisions take place. The effect of 7 on the direction of flow, as
already stated, can be seen from the relation

Py (lpy/(2n RTY)}) = (1 —7¥) [oi] Mgl em1-

To see the overall effect of x and 7 on the total mass flow rate it is necessary to
take the general result given by (29). The flow could go either way, depending
on the values of these two parameters. To this end it should be pointed out that
the a term in our asymptotic solution is of the same order of magnitude as the
alna term and thus cannot be neglected.
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FIGURE 5. [h/thip]c-q v8. K, th > My, M = My, 1 < 1y, for
7 < 1,7 =1, 7 > 1 respectively.

5. Conclusions and discussions

Tt is of interest to compare our result, given in (30), for the case of 7 = 1 with
that obtained by Willis (1965). Willis’s result is written in terms of our « as

M|,y = M| ra {1 +(1/2(27)2) (37— 1) a[ln o1 + 4 In 2]}. (32)

The coefficient of the xIna term in (32) for [m*®/my,],-; i8 exactly the same as
that in (30). This coincidence is rather astonishing in view of the fact that our
solution is based on the linearized Krook equation for a finite pressure ratio
whereas Willis’ result is obtained by iterating from the integral form of the non-
linear Krook equation for an infinite pressure ratio. This indicates that the
percentage correction, (7 — %y, )/, or (m®—mg,)/ms,, is the same up to the
aIn a term, irrespective of the pressure ratio across the slit. Qur result, given by
(30), indicates further that the percentage correction is independent of the
pressure ratio even up to the « term. The difference between our first-order
result in (30) and Willis’s result in (32) is that our result gives a net negative
correction in the finite pressure ratio case, whereas Willis’s result gives a net
positive correction in the infinite pressure case. A negative correction appears to
be reasonable since intermolecular collisions in the counter flows between the
two reservoirs should reduce the flow rate from the free-molecular value.

In conclusion, it is suggested that experiments on an aperture (slit or orifice)
flow in the finite pressure ratio case be conducted so that a meaningful com-
parison can be made between measurements and our theoretical result here.
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