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An analytical study is made of nearly free-molecular flow of a noble gas from one 
reservoir to another through a two-dimensional slit, with finite pressure and 
temperature ratios across the slit. The fundamental solution of the linear 
Boltzmann equation is employed in the study. The total mass flow is calculated 
to the first-order correction terms, of the order of alna and a, where a is the 
inverse Knudsen number. The coefficients of these terms are in general multiple 
integrals, but they become explicit functions of the pressure and temperature 
ratios after the multiple integrations are carried out by using Krook collision 
model. When the general result is simplified to the isothermal case the first-order 
correction has a negative value, indicating the reduction of the total mass flow 
due to intermolecular collisions in the counter flows. 

1. Introduction 
The steady-state flow of a noble gas from one reservoir to another through an 

aperture (a circular orifice or a slit) in the separating wall is induced by either a 
pressure difference or a temperature difference, or a combination of the two, in 
the equilibrium conditions of the gas at  large distances from the aperture. The 
problem of aperture flow due to a pressure difference only is of long standing 
beginning with Knudsen’s (1909) classical work on ‘effusion’ in the free-molecular 
limit. A survey of some of the work on this type of flow will be given later. The 
problem of aperture flow due to a temperature difference only has not received 
very much attention although it is connected to the molecular beam work. The 
more general problem of aperture flow caused by both pressure and temperature 
differences has apparently not been studied at all. I n  this general case the net 
mass flow of the gas could go either way through the aperture and could be zero 
when the pressure and temperature effects are completely compensated for by 
each other. In  other words, the combined effect of the pressure ratio, K = pl/p, ,  
and the temperature ratio, T = T,/T,, determines the direction of the net mass 
flow. Here, p l (  = plRTl) and Tl are the equilibrium pressure and temperature 
of the gas in reservoir 1 and p ,  ( = p, RT,) and T, are those in reservoir 2 (pl and 
p2 are the equilibrium densities of the gas in reservoirs 1 and 2 and R is the gas 
constant). The third parameter in the problem, which determines the flow 
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regime, is the Knudsen number K defined as the ratio of the mean free path of 
the gas at far upstream in reservoir 1 to the diameter of the orifice or the width 
of the slit (i.e. K = h1/2P0, where the tilde denotes a dimensional quantity). 
These three physical parameters, K ,  r and K ,  constitute a three-dimensional 
parameter space encompassing various flow regimes with each regime exhibiting 
a different flow behaviour. Other parameters may be employed instead of K and 7. 
One may define a characteristic velocity u by U = (pl/pl)i[l - 7 - k 1 ]  and con- 
sequently a Mach number M by M = U/(pl /pl)* = [ 1 - 7 k 1 ]  and a Reynolds 
number Re by Re = plUPo/pl = (pl?,/,u,) (p,/,o,)*[l -7k1], where p l  is the vis- 
cosity of the gas far upstream in reservoir 1. Nevertheless, the Mach number 
and the Reynolds number so defined in the general case are not as meaningful 
as those corresponding to either the isothermal case (r = 1) or the isobaric case 
( K  = 1). We therefore prefer K ,  r and K to H ,  Re and K(  = M/Re)  in this work. 

The problem of aperture flow is of interest for several reasons. As pointed out 
by Liepmann (1961), this problem offers the possibility of a comparison between 
experiment and a kinetic theory analysis which is not sensitive to the nature of 
molecular interaction with the boundary walls. Thus it motivates both experi- 
mentalist and theoretician to develop methods of obtaining solutions for various 
regions of the three-dimensional parameter space. Of particular interest are the 
nearly free-molecular flow region where K is much larger than unity, the slip 
flow region where K is small and flow regions with either large or small K and 
either large or small r. The method of solution for each region will be different 
owing to different limiting singular behaviour of flow. Also, the solution of the 
three-dimensional orifice flow is in general of a different form from that of the 
two-dimensional slit flow. Furthermore, numerical methods can be developed in 
computing the mass flow and in studying the effect of various molecular models. 

A survey of the literature indicates that most of the experimental, analytical 
and numerical work is so far centred on the orifice flow a t  large K and r = 1. 
Liepmann (1961) is the first to do both theoretical and experimental investiga- 
tions of the mass flow of a noble gas from a large container to a vacuum container 
through a circular orifice. The containers are of the same temperature and the 
upstream pressure varies from continuum to free-molecular conditions. Liep- 
mann’s experimental data in the nearly free-molecular region agree favourably 
with the first-order result (including a correction term of the order of K-1) 

obtained by Narasimha (1961) using Willis’s (1958) method. Willis’s method is 
to convert the Krook (Bhatnager, Gross & Krook 1954) kinetic equation into 
an integral form and to perform iterations on it, starting with the free-molecular 
value of the distribution function. To improve Narasimha’s method of compu- 
tation, Willis (1965) calculated, by performing one iteration, the total as well as 
the local mass flow rate of a nearly free-molecular flow through an orifice and 
through a two-dimensional slit under the same condition of a large pressure 
ratio across the aperture. There is agreement between Willis’s theoretical results 
and Liepmann’s experimental data in the circular orifice case. As far as numerical 
work is concerned, the method developed by Rotenberg & Weitzner (1969) on 
hard-sphere molecules is noteworthy. They computed the first-order correction 
to free-molecular mass flow with an infinite pressure ratio across an orifice. 
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More experiments on the orifice flow have been performed since Liepmann’s 
work. Sreekanth (1965) undertook his experimental work for the orifice.flow at 
a range of pressure ratios from 1 to 18 and of Knudsen numbers from 0.13 to 
1-78. Lord, Hurlbut & Willis (1967) used a different method to repeat Liepmann’s 
experiment, and their result on the total mass flow rate is in good agreement 
with Willis’s orifice solution. Smetana, Sherrill & Schort (1967) made measure- 
ments of the discharge characteristic of sharp-edged and round-edged circular 
orifices for a wide range of Knudsen numbers and pressure ratios. Their results 
in the case of sharp-edged orifices agree with Liepmann’s and Sreekanth’s 
experimental data and with Willis’s theoretical results for Knudsen numbers 
greater than 0.4. 

No experiments have yet been performed on the flow through a two- 
dimensional slit. As mentioned earlier, Willis’s (1965) theoretical result on the 
slit flow is obtained for the limiting case of infinite pressure ratio in which the 
back flow from reservoir 2 could be ignored. In  the case of a finite pressure ratio 
the only theoretical result which has appeared to date is that of Stewart (1969). 
By applying Willis’s method separately to flows in each direction, Stewart 
obtained two flow rates under the condition of an infinite pressure ratio and then 
took the algebraic average of the two values as the rate of the flow with a finite 
pressure ratio across the slit. Such a procedure is open to question for the simple 
reason that molecular collisions in the counter flows, which affect the net mass 
flow, have been completely ignored. It is apparent that the existence of counter 
flows makes analytical determination of the mass flow difficult. For this reason 
the problem of aperture flow a t  fmite pressure and temperature ratios has not 
been treated so far. I n  this work, however, we shall overcome this difficulty by 
employing the method of fundamental solution of the linear Boltzmann equation 
as developed by Yu (1967). Here we will treat nearly free-molecular flow through 
a two-dimensional slit between two reservoirs at low pressure and temperature 
ratios. As wil l  be shown later our result is f i s t  formally presented in multiple- 
integral form, valid for a general molecular model. The multiple integrals are 
then asymptotically expanded in powers of the inverse Knudsen number a (to 
be defined later along with AJ. The explicit asymptotic result given here includes 
only the first-order terms or terms of the order of a In a and a and the explicit 
expression of the coefficients is obtained on the use of the Krook collision model. 

2. Fundamental solution 
We consider a steady-state flow of rz noble gas through a two-dimensional slit 

of width = 2F,, between two reservoirs, as shown in figure 1. At a distance far 
upstream in reservoir 1 the gas is in equilibrium, as characterized by the absolute 
Maxwellian Fml = p1 (2nBT1)-a exp ( - $/2RT1), where is the molecular velocity. 
At some distance far downstream in reservoir 2 the gas reaches another equili- 
brium state with density pz and temperature T,. The wall separating the reser- 
voirs is assumed to be infinitely thin and to be heat insulated in such a way that 
it has constant temperatures TI and Tz on the sides of reservoirs 1 and 2 .  The 
equilibrium pressure in reservoir 1, pl, is greater than or equal to that in reservoir 
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2, pz. The pressure and temperature ratios K = pl/p2 and 7 = Tl/Tz are assumed 
to be not much different from unity so that the perturbed distribution function 
in reservoir l,f( = (F - Fml)/Fwbl), is small compared with unity. The combined 
effect of these two ratios determines the direction of the net flow, though we 
consider the net flow from reservoir 1 to 2 to be positive. In  the present work, 
we consider the case of nearly free-molecular flow so that the inverse Knudsen 
number, the expansion parameter in our problem, is much smaller than unity. 

FIGURE 1. Slit flow between two reservoirs, 1 and 2, with p,, TI, pl, A,, in 1 
and p2, T2, Pa,, A, in 2. 

Since the slit has a much smaller width than the mean free path of the gas, it 
appears as a line source with respect to an observer in reservoir 1 at a distance 
away of the order of A,. Molecular particles with a velocity $ arriving at  the 
observer through the slit are assumed, as an approximation, to be those of the 
absolute Maxwellian, Fm2 = p2(27rRTz)-qexp ( - E2/2RT2), from reservoir 2. Mole- 
cules arriving there from elsewhere are assumed to be those of Fml under free 
flow conditions. This is true for any boundary condition at the wall since mole- 
cules either diffusely or specularly reflected from the wall have the same 
Maxwellian distribution function. Using the foregoing assumptions the line 
source may be written as the product of a two-dimensional delta function 
6(P) [P(z = r cos 8, y = r sin 8) is the two-dimensional position vector] and a 
source function. To express the source function with respect to reservoir 1 let 
us draw a unit vector fi, at the middle point of slit pointing toward 2. Let 6, be 
the angle that &,, the planar component of $( = &,pP + &2), makes with 8, 
measured counterclockwise from fi, as shown in figure 1. The line source emits 
molecules towards and absorbs molecules from reservoir 1 at all velocities 5. 
We consider the molecules emitted by the source toward reservoir 1 (i.e. those 
of Fm2 from reservoir 2) to have positive contribution and the molecules from 
reservoir 1 absorbed by the source (i.e. those flowing through the slit into 
reservoir 2) to  have negative contribution. With this sign convention the source 
function is written in non-dimensional form (with respect to RT,/(p,h,)) as 

a(~,) = - ( z ~ ) - ~ z ~ , , L &  cos B,H(  - cos 8,) [K-%#exp ( - 4 7 5 2 )  - exp ( - +52)], (1)  
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where ro = Fo/A,, 5 = g ( R T , ) t  and -cos8, > 0. We now add the line source 
term to the linearized non-dimensionalized Boltzmann equation (Grad 1959) 
governing the perturbed distribution function f (r, g), 

where o(5) = (27r)-p exp ( -  &E2). Equation (2) is written in the form valid for 
molecules possessing it cut-off potential (Grad 1963). This is because the linear 
collision integral operator has already been split into two parts with one part 
involving the collision frequency v([) and the other part being the integral 

E p  * (af /w + 4% = KVl+ ( 4 w 4 5 ) )  W), (2) 

a f  1 = JN, r ) f  (7) d r ,  

where k ( [ , q )  is a collision kernal. The collision frequency v(<) has been non- 
dimensionalized with respect to (Bc)*/Al. Both v and k ( [ , q )  have explicit 
expressions for a given molecular model (Chapman & Cowling 1960; Grad 1963). 
Now, to solve (2) we decompose f into three parts (Yu 1967) f = fa +fa + f b ,  such 
that each part respectively satisfies the following equations: 

Here, fa governs those molecules streaming along the ray wedge extending from 
the line source. Through collisionsf8 produces particles with distribution function 
f a .  The remaining part f b  governs those particles that have had encounters with 
particles elsewhere and with the fa-particles. Integration of (3) along a character- 
istic yields 

where ri and rII axe the components of r perpendicular and paxallel to  g p  res- 
spectively, and H(r , )  is the Heaviside function. Upon substituting (6) into (4) 
and then integrating it along a characteristic, we obtain (Yu 1967) f a  in integral 
form as 

5) = ((r(8/w(8) ( ' /Cp)  exp [- '(8 rll/cpl H(rll), (6) 

where 8' and 8" are the angles that qP and g p  make with r. 

it in terms of its moments, u b  (r)  and pb (r )  ( = P b  + F b ) ,  de6ned by 
Finally we solve for the remaining part f b  in an approximate way by expanding 

n n n 

where f;, and &, are the components of g p  parallel and perpendicular to ii, 
Hence the expansion of f b  takes the form 

(9) f b  (r, 5) = f;,ubs(r> + !&ub?J (r) + * t 2 P b  (r)* 



570 P. P. Wang and E. Y .  Yu 

By taking the f i s t  moment of (5), integrating the resulting moment equation 
for pb with respect to r and using the boundary condition that pb approaches 
zero as r approaches infinity we obtain 

Pb (r) = -/‘& cos O”’w(c) lC(‘6, 5)  lC(5, 7)  [!J?P-’ exp ( -Pr)l dq d<d5, (lea) 

1 .[ sine’ ] .[ sine” ] 
- sin (8‘ - 0”) q = -  47) ( 7 p  5p)-l (10c) ~ ( 7 )  I sin (0’ - 8”) I sin (8’ - 8”) 

A 

and 8’ = cos-1 ( G p .  P), 8“ = cos--l(<,. P), 8”’ = cos-l (e . P). (Note that A denotes a 
unit vector.) We then take the zeroth moment of (5) and define $(r) as the 
velocity potential such that u b  = -V$. Then q5 can be shown to satisfy the 
following Poisson equation 

V2$ = - Kc”. K[q exp ( - p r ) ] ,  
r. n 

where K@K[ ...I = w(iJKEEKC1,[...]dc = Jwk(6 ,  f;)Ic(&y) [. . .]dqd<dg. 

The boundary condition for (1 1 a)  is a$pn = 0, where n denotes the co-ordinate 
normal to the walls. The Green’s function G of (11 a )  is G = (27r)-lln (l /r).  Hence, 
the solution of (1 1 a) is given by the following volume integral over the unshaded 
region V as depicted in figure I . ,  

J 

where p’ and q’ are the same as (10 b, c) except that 8’ and 8” are now measured 
from 9‘. In  ( l l b )  the surface integral has already been dropped as a$/an G 0 
and aG/an = 0 at the boundary. Since V contains both reservoirs care must be 
exercised in the use of the source function. In  the reservoir 1 part of V the 
source function is that given in (l), whereas in the reservoir 2 part of V the 
source function used for the computation is the same as that in (1) except that 
H(-cos8,) is replaced by H(cos8,). The components of the velocity ub are 
obtained by differentiating $(r) in (11 b )  with respect to x and y, i.e. 

In  the region near the slit, where r is small, a better approximate solution of fb 
is obtained by expanding it in series of the form (Yu 1967) 

(12) 

In  the present work we need only evaluate the first term, do(5) = fb(O, E), for a 
first-order correction to the free-molecular flow rate. Here we approximate 
f b  (0,C) by using the moment expansion in (9) evaluated at T = 0, i.e. 

(13) 

,fb ( r ,  8; 5) = (c )  + dl (e, 5) rln + d2 (025) + * * * . 

(5) = &%z (O) + Euuby ( O )  + * E b b  ( O ) ,  
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where ub,(o), ub, (O) ,  and &(o) are evaluated as follows. By symmetry of the 
flow with respect to the centre-line of the slit we have uby(0) = 0. From ( l l e )  
we find 

u,, (0) = lim - K(O) .K[q’ exp [ -p’(x‘2 + y‘2)*]] 

x ( 2 ~ r ) - l l n ~ ( ~ - ~ ’ ) 2 + ( ~ - ~ ‘ ) ] - 8 d ~ ’ d y ’ .  (14) 
Using (10a) we express p ,  (0) as 

3. Evaluation of total mass flow rate 
The foregoing results for fs in (6), fa in (7) and fb in (12) (for small r only) 

complete the fundamental solution of ( 2 ) .  We will now use the fundamental 
solution to compute the total mass flow rate through the slit. For this purpose 
we draw a semicircle of radius f0( 4 A,) with centre at the middle point of the 
slit, as shown in figures 2 and 3. The radial vector Fo intercepts the semicircle 
at a point A and makes an angle 8 with the unit normal ax, measured in the 

FIUURE 2. Velocity of fb-molecules. 
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FIGURE 3. Velocity off,- andf6-molecules. 
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counterclockwise sense. It is easily seen that any molecules reaching the point 
A on the semicircle must have the direction of their velocities lying between the 
angular range [el,, 6,], where OU = in + 419 and B,, = @r + 40 are functions of 
the position of the point A .  The mass flow rate contributed by fa, h8, can be 
calculated by integrating the first moment of fa evaluated at  r = ro over the 
semicircle: 

h -  8 - - J : I J lp  c o s ( e l - 6 ) ~ ~ l f 8 ( r 0 , ~ ) ~ ~ P O d ~ .  (16) 

The minus sign in (16) is used to make the flow rate from reservoir 1 to 2 positive. 
This is necessary since fa, as stated earlier, is the distribution function of those 
molecules directly from the source, at which the direction of velocities towards 
reservoir 1 was taken to bepositive in (1). Upon substituting ~ ( 6 )  in (1) and fs in (6) 
into (16) and carrying out the integration9 with respect to 6, (in therange (el,, d lU))  
and 6, we obtain 

ha = (2n)-g4P0- ' 1  j OD loOD {<; [exp ( - 4 6 2 )  - K-lrg exp ( - 4752)l 
(RT,)t --m 

x exP - 45) 4;1r01 atp dEJ. (1  7 a) 
For small ro the double integrations in ( 1 7 4  may be asymptotically expanded in 
powers of r,. The asymptotic expansion will be carried out later, after the 
molecular model has been specified. At any rate the leading term in the expan- 
sion corresponding to ro = 0 (for A, = 00) in the exponent, recovers the free- 
molecular flow rate, independent of the molecular model, namely, 

As will be shown later, the second term in the expansion is of the order of ro 
with the coefficient being a function of r and K .  

Next we evaluate the mass flow rate corresponding to f,. As explained earlier 
f, governs those molecules in reservoir 1 produced by the f,-particles through 
collisions. It is noted in figure 3 that of the f a  molecules arriving at a point A 
on the semicircle only the ones with the planar component of the velocity g p  
lying in the angular range [Of = zn - &6, 6; = in - *6] will pass through the slit 
into reservoir 2. Integration of the k s t  moment off, over the entire semicircle 
yields the mass flow rate h, of those f,-molecules passing through the slit, namely, 

x cos (6 + 8') H [  - cos (6 + O f ) ]  [ K - ~ T B  exp ( - 6~72) - exp ( - &72)] 1 
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The foregoing sevenfold integrations contain the collision frequency Y( 6 )  and 
the collision kernel k(8, q ) ,  which have not yet been specified. As shown before 
(Yu 1967), the multiple integrations in (18) can be asymptotically expanded in 
powers of ro, for small ro, with the leading term being of order rolnTo and the 
second term of order 3. 

Finally we evaluate the mass flow rate due to fb as approximated by the 
expansion (12) evaluated at T = ro, 

4. First-order results 
We have now obtained the exact integral expressions of m a  and ma, as given 

by (1 7) and (1 8) respectively, and the series expansion of rizb ,as given by (20). 
The total mass flow rate per unit width of the slit is the sum, i.e. ?i;L = m a  +ha + hb. 
Numerical evaluation of these multiple integrals in the case of a general molecular 
model appears to be difficult. As we are mainly interested here in obtaining the 
first-order correction to free-molecular flow rate we shall asymptotically expand 
the multiple integrals for ma and ha. However the coefficients of each term of the 
asymptotic series are still multiple integrals (but of one fold less) and thus cannot 
in general be evaluated analytically for a general molecular model. Nevertheless, 
if the Krook molecular model is employed all these multiple integrations can be 
carried out completely. The coefficients then become explicit functions of the 
flow parameters K and r and thus offer a physical interpretation of the flow 
problem in terms of these parameters. Furthermore, such an explicit result can 
be compared with the theoretical solutions of Willis etc. based on the Krook 
model. The Krook collision kernel in the present case can be shown to be 

wc, 7) = c1 + 5,. qp  + Q(P - 3) (72 - 3)1. (21) 

The corresponding non-dimensional collision frequency v is a constant which 
has a value (8/n)4 when A, is defined with respect to the average molecular speed 

= (8/n)B(RTl)t. For convenience we define the inverse Knudsen number as 

Now, by using the Krook molecular model, we expand the integrals in (17a) 
= vr0 = ( S / ~ ) * T ~  = (2/7~)*K-l. 

and (18) and evaluate the coefficients analytically, obtaining 

ma = [p12io/4n(RTl)+] 

x {B(K, 7) a In a-l- [rlI( 7 )  - I (  1) + 0.577 B(K, T)] a + O( a2 In a)}, (23) 
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B ( K ,  7) = fr'R - 1 - K - l ( & d  - 7 )  (24)  

I ( T )  = ( 2 -  1/37)7[2U,,(7) +0*442]-d[8U22+0'090]-Q[8U31+0*384] 

- (&- 1/6~)~[8U13+0.384]+&[48U~~-O.567], (25)  

with 

which can be numerically evaluated on a computer for a given value of 7 .  A t  

(27)  
7 = 1 we find 

In a similar way we carry out the 11-fold integrations for ubz (0) in (14) and the 
10-fold integrations for pb(0) in (15) and substitute the results into (20) ,  thus 
obtaining 

rizb = (p1(2F,)/(2nRTl)*) {(&r)*[R(l)  - ~ - l R ( 7 ) ]  +$[P(l) -~-lP(7)]}a+O(a~Ina).  

R(7) = -2n-3[(4~-~)R21(~)-8dR32-~R41-4(7-+) R23+8R43], (28b)  

1(7) = 0.1225. 

P a )  

Here, 

P(7) = - (2 /~ ' )* [+(77-  1) R 2 1 ( 7 ) + $ n 2 ( 2 ~ - $ )  R 2 2 - y d R 3 2  
-~R41+~R23-~n2dR33-~n2R42--n2(7 -a) R24 

+$R43- 8dR34-4 (7 -9 )  R25+gn2R44+yR45, (28c)  

where 

and can be evahated numerically for a given value of 7. At 7 = 1, R( 1 )  = 0.0184 
and P(l) = 0.0224. 

Finally, by adding ma in (22) ,  ha in (23 )  and rizb in (28) ,  and taking into account 
terms of the order of alna-l and a! we obtain the total mass flow rate per unit 
width of the slit, 

m = riz f ,+riz~~[[(8n)~B(~,7)]aIna-~-riz~{(2/n)* (1 -K-%) 

+ [0*577(8n)+] B(K,  7) - (8n)d[I( 1) - ~- l1 (7 ) ]  - (gn)*[R( 1) - K - ~ R ( T ) ]  
-$[f'( 1) - K - ~ P ( T ) ] )  a + O(a21n a, a2), (29)  

where mfm = [%,/(2nRT,)*] [l -7*K-l] is that given in (17b)  and 

rF,rm = h1/(2nRT1)* 

is the rate of flow into a vacuum reservoir (withp,, = 0 or K = co). The subscripts 
fm signify that m and mw have the same expressions as those in the free-molecular 
flow condition. It should be noted that in the isothermal case the pressures under 
the free flow condition are lower than the values here for the same slit width. 
Now, when p 1  = p 2  or K = 1 and Tl = T2 or 7 = 1, m in (29 )  vanishes identically, 
as it should. When Tl = T,, in the isothermal flow rizf,17=l = (1 - ~ - 1 )  mTm and 
riz in (29)  reduces to 

riLl r=l = hfml ,=,1 { 1 + ( 1 / 2 (  27r)t) (in - 1) a In a-l - 0.7975 a + O(a2 In a, a,,)}. 

(30) 
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It is noted from (30) that m/mfm, in the case of 7 = 1 ,  is independent of K, as 
shown by a single curve plotted in figure 4. This plot indicates that (riz - m,m)/mfm 
is negative. 

When p1 = p z  in the isobaric case, the flow is induced by thermal diffusion 
only. In  this case mfmlKZ1 = [&l/(27rRT,)*] [l -781, where the factor 

%1/(2nRT1)* 
no longer has the same meaning as in the case of an infinite pressure ratio. 
After a simplication of (29) the total mass flow in the isobaric case is given by 

f i lK=l  = hfmlK=l{l + (87r)-+[& - ( 1  - T)/( 1 - d)]  a In a-1- (1 - d)-1 

x {(2/n)*(l-~)+O*577(8n)~[&~(l -d)- ( 1  -7 ) ] - (87r)4[1(1) -1(7) ]  

- (&r)t[R(l)-R(~)] -+[P(1) -P(~)]}a+O(a21na, a,). (31) 

K 

FIUTTRE 4. [7j2/rit,,]7,1 ws. K .  

The sign of &]K=l follows that of rizf,lK=l at a given value of 7. When r < 1 or 
!P1 < T, (or p1 > p2) both 7it and mfm are positive, indicating a net flow from 
reservoir 1 to 2. When r > 1 or Tl > T, (or p1 < p,), the direction of the net flow 
is reversed. A plot of [rizl~h,~]~=~ ( > 0) versus K is made in figure 5 for 
various values of 7 in the range 0.5 to 2.0, and shows that the net flow rate 
decreases from the free flow value as the Knudsen number K decreases or as 
more molecular collisions take place. The effect of 7 on the direction of flow, as 
already stated, can be seen from the relation 

7jz\K=l/[%1/(2nRT1)8]  = (l - “1 [7jz/rizfm]K=1’ 

To see the overall effect of K and 7 on the total mass flow rate it is necessary to 
take the general result given by (29 ) .  The flow could go either way, depending 
on the values of these two parameters. To this end it should be pointed out that 
the a term in our asymptotic solution is of the same order of magnitude as the 
a In 0: term and thus cannot be neglected. 
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FIGURE 5. [h/hfm]K=l ws. K ,  riz > htm, h = ri2,m, h < hfm for 
T < 1, 7 = 1, T > 1 respectively. 

5. Conclusions and discussions 

that obtained by Willis (1965). Willis’s result is written in terms of our a as 
It is of interest to compare our result, given in (30), for the case of T = 1 with 

rizoolT=, = xkglT-l{l +(~/z(zT))) (in- 1)a[lna-l+&1n2]). (32) 
The coefficient of the a h a  term in (32) for [ ~ i P l r h ~ ~ ] ~ = ~  is exactly the same as 
that in (30). This coincidence is rather astonishing in view of the fact that our 
solution is based on the linearized Krook equation for a finite pressure ratio 
whereas Willis’ result is obtained by iterating from the integral form of the non- 
linear Krook equation for an infinite pressure ratio. This indicates that the 
percentage correction, ( h - ~ & . J / x k , ~  or (rj2Oo--~$&)/xk~, is the same up to the 
a h a  term, irrespective of the pressure ratio across the slit. Our result, given by 
(30), indicates further that the percentage correction is independent of the 
pressure ratio even up to the a term. The difference between our fist-order 
result in (30) and Willis’s result in (32) is that our result gives a net negative 
correction in the finite pressure ratio case, whereas Willis’s result gives a net 
positive correction in the infinite pressure case. A negative correction appears to 
be reasonable since intermolecular collisions in the counter flows between the 
two reservoirs should reduce the flow rate from the free-molecular value. 

In  conclusion, it is suggested that experiments on an aperture (slit or orifice) 
flow in the finite pressure ratio case be conducted so that a meaningful com- 
parison can be made between measurements and our theoretical result here. 
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